Sistema de gestión de baterÃa - (BMS)
Otros siempre hablan de tener un BMS, pero tú
¡Nunca lo veas!
Pregunte si su BMS es un tipo analógico simple con una luz parpadeante del detector de fallas simple que lo deja adivinando ... o un tipo programable digital con monitoreo de celda individual en tiempo real como en las baterÃas de Aerolithium.
.
Protecciones del sistema de gestión de la baterÃa
Para su tranquilidad, ¡cuando más lo necesita!
Equilibrio - continuo
Sobrevoltaje debido a la carga, no se necesita palanca
Sobrecorriente de carga
Bajo voltaje de descarga - UVP - 9.8V
Apagado automático de drenaje parasitario - LVD - 13.0V
Reserva de arranque del motor de bajo voltaje
Protección contra cortocircuitos
Térmico: temperatura alta / baja - sensores duales
LED indicador de estado de la baterÃa
Botón "Wakeup": ahorra energÃa si no se utiliza
Placa de disipador de calor AL: mantiene frescos los Mosfets
Opción de pantalla digital de panel remoto
Experimental aircraft lithium battery BMS
28V / 24V BMS for piston and turbine systems, up to 900 amp discharge, with ALL the BMS protections
What method of internal balancing does your lithium battery use ??
The basic method of balancing lithium cells hasn't changed in years.
The two types can be divided into Passive cell balancing and and the newer Active balancing type.
Passive balancing drains charge from cells with excess charge and dissipates the drained energy as heat. Active balancing on the other hand transfers charge from higher charged cells to lesser charged cells.
Cell balancing is not only important for improving the performance and life cycles of a lithium battery, it also improves safety of the lithium battery.
Both Active and Passive cell balancing are ways to improve system health by monitoring and matching each cells SOC. But, unlike passive cell balancing which simply dissipates the charge during the charge cycle, Active balancing redistributes the charge during charge and discharge cycles.
Therefore, Active cell balancing increases system run time and improves charging efficiency without generating the internal heat of a Passive resistor system.
Passive balancing is the method most used today to keep costs down at the expense of battery efficiency. A cheaper type of BMS is used in all lithium batteries seen in the market today using the Passive method where battery performance is not critical or safety dependent.
These cheaper BMS's may try to add other features like alleged redundancy or fault indicators to compensate for the inevitable early demise of the battery due to the imbalanced state of the cell pack.
VS
The faster the charging, the greater the imbalance that is occurring.
It is a common weakness with all lithium batteries that cell imbalance is a liability in every battery system. If lithium batteries are overheated or overcharged, those conditions will accelerate battery degradation and quickly shorten the batteries lifespan. Just as there are no two identical snowflakes, so too are there no two identical cells. There are always subtle differences in SOC, self-discharge rate, capacity, impedance and temperature characteristics. This is the case even if the cells are the same model, same manufacturer or same production batch.
Without a robust balancing ability the results are a large difference in voltage over time decreasing capacity.
In Passive balancing, the practical goal is to achieve capacity balance at the end of charge. However, due to the typical low balancing current, if the cells begin to diverge in SOC, it is virtually impossible to correct the charge imbalance at the end of charging. In other words, Passive balancing, while avoiding overcharging of the strongest cells does not allow a full charge of the weaker cells because extra energy is wasted in shunt resisters as heat... a LOT of heat!
With Active type balancing, 2 goals - achieving voltage parity at the end of charge and minimizing V differences among cells can be achieved at the same time. Energy is conserved and transferred to the less charged cells which results in increased safety, discharge capacity and life of the battery.
Unless the cells are well balanced, a ' weaker ' cell in the pack will limit the overall performance of the battery and eventually render the battery unusable. To avoid this, the cells should be balancing at all times not just while being charged so that the differences between cells are as small as possible.
Operational wise; the Passive method is simple and straightforward - the BMS uses resisters to dissipate energy. It is cost effective and this method is used in all older tech aircraft batteries still available today. However, since 100% of the excess energy is turned into heat inside the battery, and it is incapable of keeping up with the incoming charging current, imbalance is assured and runtimes are diminished.
A typical BMS with Passive balancing comes with 50 - 200milliamps capability. When the charging current is high - such as from an alternator - the resisters are overwhelmed and the heat generated by them degrades the cell pack over time.
Active balancing on the other hand utilizes capacitive or inductive charge shuttling to deliver energy where it is most needed with minimal loss and heat generation.
​These Safety Features engage automatically
​ Estas caracterÃsticas de seguridad se activan automáticamente:
​
Protección contra sobrecarga / sobretensión contra una falla del regulador que puede resultar en un exceso de voltaje y corriente.
Necesidades de circuitos de servicio pesado de aerolitios sin asistencia de regulador externo (palanca).
Max. carga 100 amperios de protección
La protección contra sobrecorriente limita la corriente de carga máxima a la baterÃa de cualquier tamaño de alternador / generador.
Protección térmica: 2 sensores ajustan automáticamente los lÃmites de carga y descarga según las condiciones de temperatura ambiental.
Protección de ondulación de CA: circuito de bobinas y condensadores para filtrar esto. Los motores más pequeños realmente necesitan esta caracterÃstica.
Protección contra cortocircuitos: 2 ms
Equilibrio celular: tipo de flotador inteligente activado por un diferencial de 0.015 ma a 40-300 ma
Modo de suspensión: BMS no agotará la baterÃa cuando no esté en uso, <1 ua
Gestión de Mosfet El diseño redundante patentado iguala la impedancia del MOSFET evitando el sobrecalentamiento bajo cargas extremas.
Circuito de protección conducida para reducir el daño de EMF trasero en el alternador. Ningún otro BMS de la competencia tiene esta importante caracterÃstica de seguridad.
Redundancia del sistema basado en MCU de doble núcleo: monitorea el circuito de detección de celdas, los cables de detección y los sensores térmicos contra variaciones fuera del lÃmite
Placa de disipador de calor para Mosfets: ¡para disipar el exceso de calor de toda esa potencia!